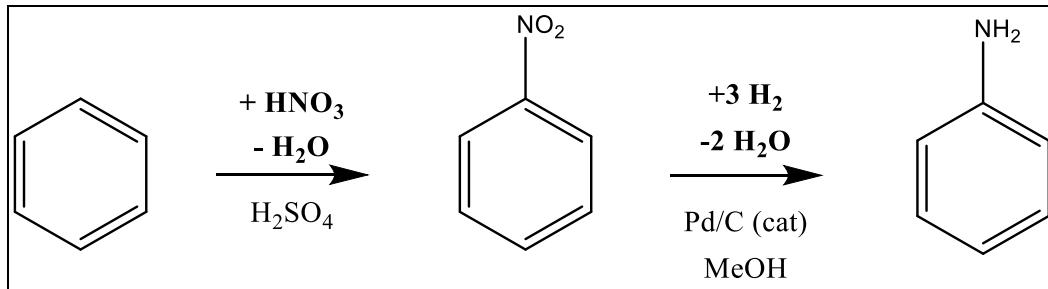


Quiz: Green chemistry / LCA

Green metrics & principles

Calculate the atom economy, carbon efficiency, reaction mass efficiency, generalized reaction mass efficiency and E-factor for the following synthesis of aniline. What type and amounts (estimated) of waste streams (in red on flow diagram) are produced? Propose ways of decreasing the E-factor. Identify and discuss some of the pros and cons of this process in the context of green chemistry.



Nitration step		Purity (w/w)	MW (kg/kmol)	Mass (kg)
IN	Benzene	1	78.1	300
	Nitric acid	1	63.0	247
	Sulfuric acid	1	98.1	245
	Methyl tert-butyl ether	1	88.2	600
	Sodium bicarbonate	1	84.0	10
	Water	1	18.0	100
OUT	Nitrobenzene	0.987	123.1	469

Hydrogenation step		Purity (w/w)	MW (kg/kmol)	Mass (kg)
IN	Nitrobenzene	0.987	123.1	469
	Methanol	1	32.0	2200
	Hydrogen	1	2.0	26
	Pd/C		-	2.3
OUT	Aniline	0.97	93.1	358

Solution

Balanced equations

STEP			MW (kg/kmol)	Conc (w/w)	Mass (kg)	kmol
Nitration/phase sep	IN	Benzene	78.1	100.0%	300	3.84
Nitration/phase sep	IN	Nitric acid	63.0	100.0%	247	3.92
Nitration/phase sep	IN	Sulfuric acid	98.1	100.0%	245	2.50
Nitration/phase sep	OUT	W1 (Acid waste)			323	
Nitration/phase sep	OUT	Crude Nitrobenzene	123.1	98.7%	469	3.76
Extraction	IN	Crude Nitrobenzene	123.1	98.7%	469	3.76
Extraction	IN	Water	18.0	100.0%	100	
Extraction	IN	Sodium bicarbonate	84.0		10	
Extraction	IN	MTBE	88.2		600	
Extraction	OUT	W2 (Aq wash)			110	
Extraction	OUT	Dil nitrobenzene	123.1	43.3%	1069	3.76
MTBE distillation	IN	Dil nitrobenzene	123.1	43.3%	1069	3.76
MTBE distillation	OUT	Nitrobenzene	123.1	98.7%	469	3.76
MTBE distillation	OUT	W3 Spent MTBE			600	
Hydrogenation	IN	Nitrobenzene	123.1	98.7%	469	3.76
Hydrogenation	IN	Methanol	32.0		2200	-
Hydrogenation	IN	Hydrogen	2.0		26	13.18
Hydrogenation	IN	Pd/C	-		2.35	-
Hydrogenation	OUT	W4 Hydrogen	2.0		4	1.88
Hydrogenation	OUT	Het rx mix	93.1		2694	3.73
Filtration	IN	Het rx mix	93.1		2694	3.73
Filtration	OUT	Crude Aniline	93.1		2692	3.73
Filtration	OUT	W5 Spent catalyst			2.3	
Methanol distillation	IN	Crude Aniline	93.1		2692	3.73
Methanol distillation	OUT	W6 Wet methanol			2334	
Methanol distillation	OUT	Aniline	93.1	97.0%	358	3.73

Nitration acid waste (W1)

	MW	kmol	kg	w/w	Remarks
H₂O	18.0	3.76	68	21.0%	kmol benzene*nitration yield
HNO₃	63.0	0.15	10	3.0%	kmol initial-kmol consumed
H₂SO₄			245	76.0%	

H₂O formed in Hydrogenation

kmol	7.45	(2* mol aniline)
kg	134.2	

Wet methanol composition (W6)

	kg	w/w
MeOH	2200	94.3%
H ₂ O	134.2	5.7%

Waste name	kg	Description
W1	323	H ₂ SO ₄ (76%), HNO ₃ (3%), water (21%), traces of nitrobenzene (water solubility~0.2%) and benzene (water solubility ~0.2%)
W2	110	Aqueous sodium bicarbonate (10%), traces of sodium sulfate, traces of nitrobenzene (water solubility~0.2%) and benzene (water solubility ~0.2%)
W3	600	MTBE, water, traces of nitrobenzene and benzene
W4	4	hydrogen, methanol, nitrobenzene, aniline
W5	2	Pd/C, methanol, water, aniline
W6	2334	Methanol (94%), water (6%), traces of aniline
Total	3373	

Atom economy	63%
Yield	97.0%
(organic) solvent intensity	7.83
CE	97.0%
RME	62%
gRME	10%
E-factor (incl. aqueous waste)	9.43

E-factor reduction:

- Reduce amounts of solvents
- Recycle solvents
- Optimize washing step (less water/solvent)

Pros:

Atom economy, short synthesis, catalytic steps, water as byproducts

Methanol ranked “In-between recommended and problematic”¹. A rather acceptable solvent (except for its toxicityflammability). Can be sourced renewably (bio-methanol).

Cons:

- Benzene and nitrobenzene both very toxic
- MTBE ranked “In-between problematic and hazardous”¹. Potentially carcinogenic and cannot be sourced renewably. Consider replacing.
- High E-factor
- High solvent intensity
- Nitration step hazardous

Green chemistry & LCA questions**1. Describe some advantages and limitations of the E-factor**

A good driver for the reduction of waste, thus of environmental impact

Not addressed: safety, environmental and human toxicity, renewability of raw materials, energy, nature of waste

2. Describe some advantages and limitations of Reaction Mass Efficiency

A good driver for the maximization of reaction efficiency, minimization of by-products and use of excess reactants.

Not addressed: solvent and workup materials, waste, environmental and human toxicity, safety, amounts of solvents, energy, renewability of raw materials

3. Define “burden” in LCA

The sum of emissions of a specific substance within the system’s boundary

4. Name and describe 4 impact categories in LCA

¹ Byrne et al., Tools and techniques for solvent selection: green solvent selection guides, Sustain Chem Process (2016) 4:7

Global warming potential, Ozone layer depletion potential, Tropospheric ozone formation potential, Acidification potential

5. Give 2 examples of burden shifting

Fossil fuels → bio fuels to attempt decreasing GWP → increase of eutrophication potential and land use, loss of biodiversity, increase toxicity on freshwater ecosystems

Changing the purification sequence by postponing a distillation step further downstream in the manufacturing chain: shift of emissions from one plant to another.

6. Why can dimethyl carbonate be considered as a “green” reagent and solvent?

Green synthesis. Replacement of hazardous methylating agents (phosgene, dimethyl sulfate) using a clean process (catalytic, no solvent, no wastewater). Biodegradable. Not toxic.

7. Cite 2 substances causing water eutrophication

Ammonia, phosphoric acid

8. Cite 2 substances causing acidification

Sulfur dioxide, nitrogen oxides

9. Cite 2 substances causing global warming

CO₂, N₂O

10. Name the reference compound for acidification

SO₂

11. Which chemical is the main contributor to global warming worldwide?

CO₂

12. Does N₂O have a higher ozone depletion potential than CFC-11?

No, the ODP of CFC-11 is 59 times higher than N₂O

13. Which sector is the largest contributor to global warming worldwide: transportation, energy, or manufacturing?

Energy (~50%)

14. What is the main environmental issue with CFCs and what is their mechanism of action?

Stratospheric ozone depletion → increased exposure to carcinogenic UV-B. Formation of chlorine radicals that catalyze the transformation of ozone to O₂. High stability of CFCs allow them to reach the stratosphere without being degraded

15. Which substance has the largest global warming potential: SF₆, CFC-11 or CO₂?

SF₆ by far

16. Calculate the photochemical ozone creation potential for a process that emits 2.2 kg of methane, 0.2 kg of propane and 0.1 kg of 2-methylhexane per ton of final product.

	kg / ton	POCP in kg ethylene / kg	kg ethylene-eq / ton
methane	2.2	0.034	0.075
propane	0.2	0.411	0.082
2-methylhexane	0.1	0.719	0.072
TOTAL			0.229

17. Cite three possible boundaries of a LCA

Cradle to grave, cradle to gate, gate to gate